

Рассмотрено на МО учителей математики и информатики руководитель МО Коргус Корчук Е.А.. Протокол №1 от 26 08 2022г

РАБОЧАЯ ПРОГРАММА

по астрономии

11 класс, базовый уровень, ФГОС

Планируемые результаты освоения учебного предмета

Предметные результаты изучения астрономии в школе представлены в содержании курса по темам. Обеспечить достижение планируемых результатов основной образовательной программы, создать самостоятельного успешного усвоения обучающимися новых знаний, умений, видов и способов деятельности должен системно-деятельностный подход. В соответствии с этим подходом именно активность обучающихся признается основой достижения развивающих целей образования — знания не передаются в ГОТОВОМ виде, добываются учащимися В процессе познавательной деятельности.

Выпускник на базовом уровне научится:

- воспроизводить сведения по истории развития астрономии, ее связях с физикой и математикой;
- объяснять наблюдаемые невооруженным глазом движения звезд и Солнца на различных географических широтах, движение и фазы Луны, причины затмений Луны и Солнца;
- применять звездную карту для поиска на небе определенных созвездий и звезд;
- описывать особенности движения тел Солнечной системы под действием сил тяготения по орбитам с различным эксцентриситетом;
- объяснять причины возникновения приливов на Земле и возмущений в движении тел Солнечной системы;
- характеризовать особенности движения и маневров космических аппаратов для исследования тел Солнечной системы;
- описывать характерные особенности природы планет-гигантов, их спутников и колец;
- характеризовать природу малых тел Солнечной системы и объяснять причины их значительных различий;
- описывать явления метеора и болида, объяснять процессы, которые происходят при движении тел, влетающих в атмосферу планеты с космической скоростью;
- описывать последствия падения на Землю крупных метеоритов;
- определять и различать понятия (звезда, модель звезды, светимость, парсек, световой год);
- определять расстояние до звездных скоплений и галактик по цефеидам на основе зависимости «период светимость»;
- классифицировать основные периоды эволюции Вселенной с момента начала ее расширения Большого взрыва.

Выпускник на базовом уровне получит возможность научиться:

- формулировать и обосновывать основные положения современной гипотезы о формировании всех тел Солнечной системы из единого

- газопылевого облака;
- объяснять механизм парникового эффекта и его значение для формирования и сохранения уникальной природы Земли;
- объяснять сущность астероидно-кометной опасности, возможности и способы ее предотвращения;
- описывать наблюдаемые проявления солнечной активности и их влияние на Землю;
- сравнивать модели различных типов звезд с моделью Солнца;
- объяснять смысл понятий (космология, Вселенная, модель Вселенной, Большой взрыв, реликтовое излучение);
- характеризовать основные параметры Галактики (размеры, состав, структура);
- использовать карту звездного неба для нахождения координат светила;
- приводить примеры практического использования астрономических знаний о небесных телах и их системах;
- решать задачи на применение изученных астрономических законов;
- осуществлять самостоятельный поиск информации естественно-научного содержания с использованием различных источников, ее представление и обработку в разных формах.

Содержание учебного материала (базовый уровень):

Предмет астрономии

Роль астрономии в развитии цивилизации. Эволюция взглядов человека на Вселенную. Геоцентрическая и гелиоцентрическая системы. Особенности методов познания в астрономии. Практическое применение астрономических исследований. История развития отечественной космонавтики. Первый искусственный спутник Земли, полет Ю.А. Гагарина. Достижения современной космонавтики.

Основы практической астрономии

Небесная сфера. Особые точки небесной сферы. Небесные координаты. Звездная карта, созвездия, использование компьютерных приложений для отображения звездного неба. Видимая звездная величина. Суточное движение светил. Связь видимого расположения объектов на небе и географических координат наблюдателя. Движение Земли вокруг Солнца. Видимое движение и фазы Луны. Солнечные и лунные затмения. Время и календарь.

Законы движения небесных тел

Структура и масштабы Солнечной системы. Конфигурация и условия видимости планет. Методы определения расстояний до тел Солнечной системы и их размеров. Небесная механика. Законы Кеплера. Определение масс небесных тел. Движение искусственных небесных тел.

Солнечная система

Происхождение Солнечной системы. Система Земля - Луна. Планеты земной группы. Планеты-гиганты. Спутники и кольца планет.

Малые тела Солнечной системы. Астероидная опасность.

Методы астрономических исследований

Электромагнитное излучение, космические лучи и гравитационные волны как источник информации о природе и свойствах небесных

тел. Наземные и космические телескопы, принцип их работы. Космические аппараты. Спектральный анализ. Эффект Доплера. Закон смещения Вина. Закон Стефана-Больцмана.

Звезды

Звезды: основные физико-химические характеристики и их взаимная связь. Разнообразие звездных характеристик и их

закономерности. Определение расстояния до звезд, параллакс. Двойные и кратные звезды. Внесолнечные планеты. Проблема существования

жизни во Вселенной. Внутреннее строение и источники энергии звезд. Происхождение химических элементов. Переменные и

вспыхивающие звезды. Коричневые карлики. Эволюция звезд, ее этапы и конечные стадии.

Строение Солнца, солнечной атмосферы. Проявления солнечной активности: пятна, вспышки, протуберанцы. Периодичность

солнечной активности. Роль магнитных полей на Солнце. Солнечно-земные связи.

Наша Галактика - Млечный Путь

Состав и структура Галактики. Звездные скопления. Межзвездный газ и пыль. Вращение Галактики. Темная материя.

Галактики. Строение и эволюция Вселенной

Открытие других галактик. Многообразие галактик и их основные характеристики. Сверхмассивные черные дыры и активность галактик. Представление о космологии. Красное смещение. Закон Хаббла. Эволюция Вселенной. Большой Взрыв. Реликтовое излучение. Темная энергия.

Тематическое планирование предмета

№	Тема	Количество	Форма
Π/Π		часов	промежуточной
			аттестации
1.	Предмет астрономии	4	
2.	Основы практической астрономии	6	

3.	Законы движения небесных тел	4	
4.	Солнечная система	4	Контрольная работа
5.	Методы астрономических исследований	4	
6.	Звезды	7	
7.	Наша Галактика - Млечный Путь	2	
8.	Галактики. Строение и эволюция Вселенной	2	
Итого:		33	1